It is known a priori that vibrations that occur in the elements of the track structure during the passage of a train load are a superposition of free and forced mechanical vibrations. It has been established that the range of oscillation frequencies of the elements of the track superstructure includes oscillations with a frequency from tens to hundreds and thousands of hertz. However, the influence of vibrations on the track and their dependence, in turn, on the design of the track, has not been fully studied, which causes controversy between specialists in this matter. There is an opinion that in intermediate fastenings, the main role is played by an elastic gasket, which ensures the vertical rigidity of the rail-sleeper assembly. It has been experimentally established that in the frequency range below the frequency of free oscillations of rail fastenings, the force applied to the upper surface of the elastic gasket is transferred to the lower surface in an unchanged form.
The article discusses the vibrations that occur in the elements of the upper structure of the track (rails, sleepers, rail fastenings, ballast base) during the passage of a moving load, which significantly affect the strength, and, consequently, the durability of both the elements themselves and the railway track generally. Vibrograms, oscillograms, accelerograms of rail oscillations and their spectra during the passage of TALGO are presented. At present, the VOSSLOH fastening, developed in Germany, has been widely used in the construction of tracks on high-speed railways of the Republic of Kazakhstan. In this regard, there is a need for a comprehensive study of the operation of this type of fastening under a train load