Recent one-dimensional simulations of planar sheaths with strong electron emission have shown that trapping of charge-exchange ions causes transitions from space-charge limited (SCL) to inverse sheaths. However, multidimensional emitting sheath phenomena with collisions remained unexplored, due in part to high computational cost. We developed a novel continuum kinetic code to study the sheath physics, current flow and potential distributions in two-dimensional unmagnetized configurations with emitting surfaces. For small negatively biased thermionic cathodes in a plasma, the cathode sheath can exist in an equilibrium SCL state. The SCL sheath carries an immense density of trapped ions, neutralized by thermoelectrons, within the potential well of the virtual cathode. For further increases of emitted flux, the trapped ion cloud expands in space. The trapped ion space charge causes an increase of thermionic current far beyond the saturation limit predicted by conventional collisionless SCL sheath models without ion trapping. For sufficiently strong emission, the trapped ion cloud consumes the entire 2D plasma domain, forming a mode with globally confined ions and an inverse sheath at the cathode. In situations where the emitted flux is fixed and the bias is swept (e.g. emissive probe), the trapped ions cause a large thermionic current to escape for all biases below the plasma potential. Strong suppression of the thermionic emission, required for the probe to float, only occurs when the probe is above the plasma potential.