The isotropic compression of polydisperse packings of frictionless spheres is modeled with the discrete element method (DEM). The evolution of coordination number, fraction of rattlers, isotropic fabric, and pressure (isotropic stress) is reported as function of volume fraction for different system parameters. The power law relationship, with power ≈ 1/2, between coordination number and volume fraction is confirmed in the jammed state for a broad range of volume fractions and for different (moderate) polydispersities. The polydispersity in the packing causes a shift of the critical volume fraction, i.e., more heterogeneous packings jam at higher volume fractions. Close to jamming, the coordination number and the jamming volume fraction itself depend on both history and rate. At larger densities, neither the deformation history nor the loading rate have a significant effect on the evolution of the coordination number.Concerning the fabric tensor, comparing our DEM results to theoretical predictions, good agreement for different polydispersities is observed. An analytical expression for the pressure as function of isotropic (volumetric) strain is proposed for polydisperse packings, based on the assumption of uniform deformation. We note that, besides the implicit proportionality to contact number density (or fabric), no single power-law is evidenced in the relation for the pressure. However, starting from zero pressure at the jamming point, a linear term with a quadratic correction describes the stress evolution rather well for a broad range of densities and for various polydispersities. Finally, an incremental evolution equation is proposed for both fabric and stress, as function of isotropic strain, and involving the coordination number and the fraction of rattlers, as starting point for further studies involving anisotropic deformations.Preprint submitted to Elsevier Science 6 octobre 2010
RésuméLois de comportement pour déformations isotrope d'assemblage de sphères polydisperses sans frottement La compression isotrope d'assemblages polydisperses de sphères sans frottement est modélisée par une méthode auxéléments discrets (DEM). L'évolution du nombre de coordination, de la fraction de "rattlers" (les particules instables, sans contactes), de la texture isotrope et de la pression (contrainte isotrope) estétudiée en fonction de la fraction volumique pour différentes valeurs des paramètres du système. Une relation en loi puissance, avec un exposé proche de 0.5, entre le nombre de coordination et la fraction volumique est confirmée en régime de blocage pour une large gamme de fractions volumiques et pour différentes polydispersités. La polydispersité de l'assemblage induit un décalage de la fraction volumique critique, c'est-à-dire que les assemblages plus hétérogènes se bloquentà des fractions volumiques plusélevées. Au voisinage du jamming, le nombre de coordination et la fraction volumique de blocage dépendentà la fois de l'histoire et de la vitesse de chargement. A des densités pluś elevées, ni l'histo...