Active illumination light becomes strongly reflective interference light after specular reflection. It causes saturation in some areas of the image during target detection, resulting in the inability to recognize detailed target feature information. This greatly limits the application of active illumination detection. Based on the Mueller matrix analysis of the difference in polarization characteristics between the background specular reflected light and the target reflected light, we propose a reflection suppression method based on orthogonal polarization imaging. The method employs a polarization modulation strategy in a bidirectional manner between the light source and the detector. First, the polarization information difference is amplified by active polarized illumination between the background specular reflected light and the target reflected light. Then, the target recovery is achieved by suppressing the background specular reflected light through the polarized orthogonal imaging method. Meanwhile, this method can also be used for moving target detection. The experimental results show that the reflection suppression method of orthogonal polarization imaging can effectively suppress the interference of specular reflection on the target image. Additionally, it can reduce the problems of missed and false detection that occurs in moving target detection and improve the active illumination detection effect.