Analysis of Two-Level Complex Shifted Laplace Preconditioner and Deflation-Based Preconditioner for Helmholtz Equation
Rao Faisal Rajput,
Hanan Shiekh,
K. B. Amur
Abstract:A Long time deflation preconditioner is used to speed up the convergence of the Krylov subspace method. The discretization of Helmholtz equation with Dirichlet boundary condition by finite difference method obtained any linear system. Resolving a large wavenumber requires a larger number of Grid points, i.e. large linear systems. Thus due to the large linear system, many (sparse) direct methods have taken more memory, So we have used the (iterative technique) Krylov subspace method. One of the problems of the … Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.