In deep-sea mining hydraulic lifting systems, centrifugal pumps are very important as power units. In the process of transportation, the fluid prewhirl phenomenon in the impeller inlet will lead to changes in the state of motion of the particles and fluid and cause the wear of the inlet pipe, which can lead to centrifugal pump failure in serious cases. In this paper, a numerical simulation of the centrifugal pump is carried out based on the CFD-DEM coupling method to analyze the influence of the prewhirl on the wear of the inlet pipe. The results show that the velocity streamline near the impeller inlet position changes significantly. The flow field velocity increases along the radial direction of the inlet pipe, and it has a maximum value at r/R = 0.98. The prewhirl flow pulls the particles to change their original motion direction, and the area where the particles are subjected to high fluid force is concentrated between 0.5 d/D and 1 d/D, about 0.015 to 0.018 N, resulting in the uneven distribution of particles. The high-wear area appears in the bottom-left area (specifically, L4, L9, and L13), and this is also the location of the largest cumulative force; the high-wear area shows a triangle. The collision energy loss of particles increases due to the influence of the prewhirl, which leads to an increase in wear.