For irregular end milling cutters, the incomplete equality of the pitch angle and helix angle will lead to an uneven mass distribution. The problems of centroid distribution caused by this, and whether it would affect the dynamic characteristics of milling cutters, have not been systematically studied. In this paper, through the proposed mathematical model, the centroid positions of each radial section of four types of end milling cutters, with equal overall eccentricities and different structures, are calculated, respectively. The centroid distribution of end milling cutters is studied and analyzed. Combined with finite element analysis, the vibration mode, frequency, and resonance frequency band of each type of end milling cutter, under the same dynamic excitation, is obtained. Based on a study of the dynamic characteristics of various types of end milling cutters, it is found that the response displacement of the variable pitch variable helix end milling cutter is the smallest, which is 0.043800 mm. With the same level of accuracy, its dynamic performance is the best. On the premise of not changing the overall eccentricity of the end milling cutter, a new idea for the structural design to improve the dynamic characteristics of the end milling cutter is provided.