This study is a continuation of pilot research on the relationships between seismic activity and changes in very low frequency (VLF) signals starting a few minutes or a few dozen minutes before an earthquake. These changes are recorded in the time and frequency domains and their duration can be influenced not only by the strongest earthquake but also by others that occur in a short time interval. This suggests that there are differences in these changes in cases of individual earthquakes and during the period of intense seismic activity (PISA). In a recent study, they were validated in the time domain by comparing the amplitude noise reductions during the PISA and before earthquakes that occurred in the analysed periods without intense seismic activity (PWISA). Here, we analyse the changes in the VLF signal amplitude in the frequency domain during the PISA and their differences are compared to the previously investigated relevant changes during PWISA. We observe the signal emitted by the ICV transmitter in Italy and received in Serbia from 26 October to 2 November 2016 when 907 earthquakes occurred in Central Italy. The study is based on analyses of the Fourier amplitude AF obtained by applying the fast Fourier transform (FFT) to the values of the ICV signal amplitude sampled at 0.1 s. The obtained results confirm the existence of one of the potential earthquake precursors observed during PWISA: significantly smaller values of AF for small wave periods (they can be smaller than 10−3 dB) than under quiet conditions (the expected values are larger than 10−2 dB). Exceptions were the values of AF for wave periods between 1.4 s and 2 s from a few days before the observed PISA to almost the end of that period. They were similar or higher than the values expected under quiet conditions. The mentioned decrease lasted throughout the observed longer period from 10 October to 10 November, with occasional normalisation. It was many times longer than the decreases in AF around the considered earthquakes during PWISA, which lasted up to several hours. In addition, no significant wave excitations were recorded at discrete small values of the wave periods during the PISA, as was the case for earthquakes during PWISA. These differences indicate the potential possibility of predicting the PISA if the corresponding earthquake precursors are recorded. Due to their importance for potential warning systems, they should be analysed in more detail in future statistical studies.