Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
In underground construction projects, traversing hard rock layers demands concentrated CO2 fracturing energy and precise directional crack expansion. Due to the discontinuity of the rock mass at the tip of prefabricated directional fractures in CO2 fracturing, traditional simulations assuming continuous media are limited. It is challenging to set boundary conditions for high strain rate and large deformation processes. The dynamic expansion mechanism of the 3D fracture network in CO2 directional fracturing is not yet fully understood. By treating CO2 fracturing stress waves as hemispherical resonance waves and using a particle expansion loading method along with dynamic boundary condition processing, a 3D numerical model of CO2 fracturing is constructed. This model analyzes the dynamic propagation mechanism of 3D spatial fractures network in CO2 directional fracturing rock materials. The results show that in undirected fracturing, the fracture network relies on the weak structures near the rock borehole, whereas in directional fracturing, the crack propagation is guided, extending the fracture’s range. Additionally, the tip of the directional crack is vital for the re-expansion of the rock mass by high-pressure CO2 gas, leading to the formation of a symmetrical, umbrella-shaped structure with evenly developed fractures. The findings also demonstrate that the discrete element method (DEM) effectively reproduces the dynamic fracture network expansion at each stage of fracturing, providing a basis for studying the CO2 directional rock cracking mechanism.
In underground construction projects, traversing hard rock layers demands concentrated CO2 fracturing energy and precise directional crack expansion. Due to the discontinuity of the rock mass at the tip of prefabricated directional fractures in CO2 fracturing, traditional simulations assuming continuous media are limited. It is challenging to set boundary conditions for high strain rate and large deformation processes. The dynamic expansion mechanism of the 3D fracture network in CO2 directional fracturing is not yet fully understood. By treating CO2 fracturing stress waves as hemispherical resonance waves and using a particle expansion loading method along with dynamic boundary condition processing, a 3D numerical model of CO2 fracturing is constructed. This model analyzes the dynamic propagation mechanism of 3D spatial fractures network in CO2 directional fracturing rock materials. The results show that in undirected fracturing, the fracture network relies on the weak structures near the rock borehole, whereas in directional fracturing, the crack propagation is guided, extending the fracture’s range. Additionally, the tip of the directional crack is vital for the re-expansion of the rock mass by high-pressure CO2 gas, leading to the formation of a symmetrical, umbrella-shaped structure with evenly developed fractures. The findings also demonstrate that the discrete element method (DEM) effectively reproduces the dynamic fracture network expansion at each stage of fracturing, providing a basis for studying the CO2 directional rock cracking mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.