Objective
This study aimed to investigate the associations between osteoporosis, biochemical indexes, bone mineral density (BMD), and cardiovascular disease.
Methods
A cross-sectional study design was used to examine the relationships between these parameters. Logistic regression and correlation analyses were conducted to assess the associations between elevated levels of triglyceride, total cholesterol, low-density lipoprotein (LDL), high-density lipoprotein (HDL), homocysteine, and the presence of osteoporosis. Additionally, correlations between BMD and biochemical indexes were analyzed. The incidence of cardiovascular disease and its correlation with BMD were evaluated. Receiver operating characteristic (ROC) analysis was performed to determine the utility of BMD in identifying cardiovascular disease.
Results
The results revealed that elevated triglyceride, total cholesterol, and LDL levels were positively associated with osteoporosis, while higher HDL levels and homocysteine were negatively associated. Correlation analysis demonstrated negative correlations between triglyceride levels and BMD, and positive correlations between total cholesterol and HDL levels with BMD. LDL levels showed a weak negative correlation, and homocysteine levels exhibited a strong negative correlation with BMD. The osteoporosis group had lower BMD and a higher incidence of cardiovascular disease compared to the non-osteoporosis group. Logistic regression analysis confirmed the correlation between lower BMD and increased risk of cardiovascular disease.
Conclusion
This study provides evidence supporting the associations between osteoporosis, biochemical indexes, BMD, and cardiovascular disease. Aberrations in lipid profiles and homocysteine levels may contribute to osteoporosis development. Lower BMD, particularly in individuals with osteoporosis, appears to increase the risk of cardiovascular disease. BMD shows promise as a diagnostic tool for identifying individuals at risk of cardiovascular disease. Further research is needed to elucidate the underlying mechanisms and establish the clinical implications of these relationships. Future longitudinal studies are necessary to determine causality and long-term prognostic implications.