We reported magnetooptical properties of Tb3+in single crystals of Tb3Fe5O12and Tb3Ga5O12for ion occupying sites of D2symmetry in the garnets structure. It is shown that in the employed Voigt geometry the magnetic linear birefringence and the dichroism reach values 10-4, and have a strong dependence on the wavelength and a strong anisotropy. The absorption spectra were obtained at temperatures of 30K, 100K using magnetic field up to 25 kOe applied parallel and perpendiculare to the electric vector E linearly polarized light on the7F67F0and7F67F1optical transitions region. The aim of this research was revealing of a role of contributions of exchange interaction and a crystal field in splitting of energy levels of the basic condition7F6ion Tb3+multiplet in Tb ferrite-garnet by studying of character of spectra magnetic linear dichroism (MLD) paramagnetic and ferrimagnetic crystals placed in an external magnetic field. More over, the assumption about nonreciprocity of magnetic linear birefringence (MLB) spectra and dichroism with the change of the relative orientation of the magnetization vector I and the light wave vector has been experimentally confirmed. This effect may use as a base for the design of the different transducers, for example, magnetooptical optical channels commutator.