Rotary electromagnetic fault current limiter (FCL) is an emerging technology for limiting fault currents in the power network. The device consists of two movable air-core spherical reactor rings (i.e., inner and outer rings). The movable feature allows the reactor rings to rotate, and form a proper mutual positional displacement. This can limit the fault current since the effective inductance of the device is dependent to the mutual angular position of the reactor rings. Due to the unconventional structure, to this date, the design process has solely been based on finite element (FE) method. This paper aims to analytically validate the theory and the overall functionality of the device in both the steady state and transient regime. For this propose, the resistance and the inductance of the device are first computed at normal operating condition using the basic theory of engineering electromagnetics. Next, performance characteristics such as electromagnetic torque, rotational displacement of the reactors, effective inductance of the device, and the network current are calculated at the faulty condition. For verification purposes, analytical results are compared with via FE simulation and experimental test.