We study structural changes of adaptive networks in the co-evolutionary susceptible-infectedsusceptible (SIS) network model along its phase transition. We clarify to what extent these changes can be used as early-warning signs for the transition at the critical infection rate λc at which the network collapses and the system disintegrates. We analyze the interplay between topology and node-state dynamics near criticality. Several network measures exhibit clear maxima or minima close to the critical threshold that could potentially serve as early-warning signs. These measures include the SI link density, triplet densities, clustering, assortativity and the eigenvalue gap. For the SI link density and triplet densities the maximum is found to originate from the co-existence of two power laws. Other network quantities, such as the degree, the branching ratio, or the harmonic mean distance, show scaling with a singularity at λ = 0 and not at λc, which means that they are incapable of detecting the transition.