In this paper we consider the following nonlinear quasi-periodic system:
$$\begin{eqnarray}{\dot{x}}=(A+\unicode[STIX]{x1D716}P(t,\unicode[STIX]{x1D716}))x+\unicode[STIX]{x1D716}g(t,\unicode[STIX]{x1D716})+h(x,t,\unicode[STIX]{x1D716}),\quad x\in \mathbb{R}^{d},\end{eqnarray}$$
where
$A$
is a
$d\times d$
constant matrix of elliptic type,
$\unicode[STIX]{x1D716}g(t,\unicode[STIX]{x1D716})$
is a small perturbation with
$\unicode[STIX]{x1D716}$
as a small parameter,
$h(x,t,\unicode[STIX]{x1D716})=O(x^{2})$
as
$x\rightarrow 0$
, and
$P,g$
and
$h$
are all analytic quasi-periodic in
$t$
with basic frequencies
$\unicode[STIX]{x1D714}=(1,\unicode[STIX]{x1D6FC})$
, where
$\unicode[STIX]{x1D6FC}$
is irrational. It is proved that for most sufficiently small
$\unicode[STIX]{x1D716}$
, the system is reducible to the following form:
$$\begin{eqnarray}{\dot{x}}=(A+B_{\ast }(t))x+h_{\ast }(x,t,\unicode[STIX]{x1D716}),\quad x\in \mathbb{R}^{d},\end{eqnarray}$$
where
$h_{\ast }(x,t,\unicode[STIX]{x1D716})=O(x^{2})~(x\rightarrow 0)$
is a high-order term. Therefore, the system has a quasi-periodic solution with basic frequencies
$\unicode[STIX]{x1D714}=(1,\unicode[STIX]{x1D6FC})$
, such that it goes to zero when
$\unicode[STIX]{x1D716}$
does.