“…In the meantime, the tempered distributions of polynomial growth were extended to tempered distributions of | | -growth, K 1 (R), in [5,6] and | | -growth, K (R), in [7,8] or -growth, K (R), in [9,10], where the function ( ) grows faster than any linear functions as | | . We have considered the analytic representation of tempered distributions of -growth with restricted order, K (R), by wavelets [11]. Also, we have shown that the multiresolution expansions of K (R) converges pointwise to the value of the distribution where it exists [12].…”