We consider a certain sequence of flat vector bundles on a compact locally symmetric orbifold, and we evaluate explicitly the associated asymptotic Ray-Singer real analytic torsion. The basic idea is to computing the heat trace via Selberg's trace formula, so that a key point in this paper is to evaluate the orbital integrals associated with nontrivial elliptic elements. For that purpose, we deduce a geometric localization formula, so that we can rewrite an elliptic orbital integral as a sum of certain identity orbital integrals associated with the centralizer of that elliptic element. The explicit geometric formula of Bismut for semisimple orbital integrals plays an essential role in these computations.