Quantum effects on a Landau-type system associated with a moving atom with a magnetic quadrupole moment subject to confining potentials are analysed. It is shown that the spectrum of energy of the Landau-type system can be modified, where the degeneracy of the energy levels can be broken. In three particular cases, it is shown that the analogue of the cyclotron frequency is modified, and the possible values of this angular frequency of the system are determined by the quantum numbers associated with the radial modes and the angular momentum and by the parameters associated with confining potentials in order that bound states solutions can be achieved.