Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Methane Hydrates and Paraffin Plugs in flexible lines are concerns in offshore production. They may stop wells for months, causing high financial losses. Sometimes, operators use depressurization techniques for hydrate removal. Other strategy is using coiled tubing or a similar unit in order to perform local heating or solvent injection. However, frequently these strategies are not successful. In those cases, a rig may perform the operation or the line may be lost. This project developed a robotic system in order to perform a controlled local heating and remove obstructions. The robotic system developed is able to access the line from the production platform. It uses a self-locking system in order to exert high traction forces. An umbilical with neutral buoyancy and low friction coefficient allows significant drag reduction. It allows moving upwards and in pipes with a large number of curves. Coiled tubing and similar units cannot do that. Carbon fiber vessels and compact circuits give flexibility to move inside 4-inch flexible pipes. A novel theoretical model allows the cable traction calculation using an evolution of the Euler-Eytelwein equation. Experimental tests validated this model using curved pipes, both empty and filled with a fluid and using different loads. Experimental tests also validated the external layer traction resistance. Furthermore, the carbon fiber vessels were pressure tested, indicating a collapse resistance of more than 550 bar (8.000 psi). In addition, exhaustive tests of the onboard electronics and of the surface control system guarantee the communication reliability. Additionally, the 25 kN (5.6 kip) traction system was modeled theoretically considering the self-locking system, the contact with the wall and a diameter range. Four prototypes allowed to: a) compare hydraulic and electric drive systems, b) validate the self-locking mechanism up to its limit, c) analyze the hydraulic system for leg opening and translation and d) prove the traction capacity. Finally, a theoretical model for the local heating system was developed. The system experimental validation on a cooled environment demonstrated its capacity of increasing temperature. Furthermore, it allows the obstruction removal in a controlled manner, avoiding damage to the polymeric layer of the flexible line.
Methane Hydrates and Paraffin Plugs in flexible lines are concerns in offshore production. They may stop wells for months, causing high financial losses. Sometimes, operators use depressurization techniques for hydrate removal. Other strategy is using coiled tubing or a similar unit in order to perform local heating or solvent injection. However, frequently these strategies are not successful. In those cases, a rig may perform the operation or the line may be lost. This project developed a robotic system in order to perform a controlled local heating and remove obstructions. The robotic system developed is able to access the line from the production platform. It uses a self-locking system in order to exert high traction forces. An umbilical with neutral buoyancy and low friction coefficient allows significant drag reduction. It allows moving upwards and in pipes with a large number of curves. Coiled tubing and similar units cannot do that. Carbon fiber vessels and compact circuits give flexibility to move inside 4-inch flexible pipes. A novel theoretical model allows the cable traction calculation using an evolution of the Euler-Eytelwein equation. Experimental tests validated this model using curved pipes, both empty and filled with a fluid and using different loads. Experimental tests also validated the external layer traction resistance. Furthermore, the carbon fiber vessels were pressure tested, indicating a collapse resistance of more than 550 bar (8.000 psi). In addition, exhaustive tests of the onboard electronics and of the surface control system guarantee the communication reliability. Additionally, the 25 kN (5.6 kip) traction system was modeled theoretically considering the self-locking system, the contact with the wall and a diameter range. Four prototypes allowed to: a) compare hydraulic and electric drive systems, b) validate the self-locking mechanism up to its limit, c) analyze the hydraulic system for leg opening and translation and d) prove the traction capacity. Finally, a theoretical model for the local heating system was developed. The system experimental validation on a cooled environment demonstrated its capacity of increasing temperature. Furthermore, it allows the obstruction removal in a controlled manner, avoiding damage to the polymeric layer of the flexible line.
Summary Methane hydrates and paraffin plugs on flexible lines are concerns in offshore production. They may stop wells for months, causing high financial losses. Sometimes, operators use depressurization techniques for hydrate removal. Another strategy is using coiled tubing or a similar unit to perform local heating or solvent injection. However, frequently these strategies are not successful. In those cases, a rig may perform the operation, or the line may be lost. We developed a robotic system to perform controlled local heating and remove obstructions. The system developed can access the line from the production platform. It uses a self-locking system to exert high traction forces. An umbilical with neutral buoyancy and low friction coefficient allows significant friction reduction. It allows moving upward and in pipes with a large number of curves. Coiled tubing and similar units cannot do that. Carbon fiber vessels and compact circuits give the flexibility to move inside 4-in. flexible pipes. In addition, a novel theoretical model allows the cable traction calculation using an evolution of the Euler-Eytelwein equation. Experimental tests validated this model using curved pipes, both empty and filled with fluid, and using different loads. Experimental tests also confirmed the external layer traction resistance. Furthermore, the carbon fiber vessels were pressure tested, indicating a collapse resistance of 57 MPa (8,300 psi). Besides, exhaustive tests of the onboard electronics and the surface control system guarantee the communication reliability. In addition, a theoretical model allowed the design of the 25 kN (5.6 kip) traction system considering the self-locking system, the contact with the wall, and a diameter range. Four prototypes allowed us to compare hydraulic and electric drive systems, validate the self-locking mechanism up to its limit, analyze the hydraulic system for leg opening and translation, and prove the traction capacity. Finally, a theoretical model allowed the local heating system and the temperature to increase. The experimental validation of the system on a cooled environment demonstrated its ability to increase temperature. Further, it allowed the obstruction removal in a controlled manner, avoiding damage to the polymeric layer of the flexible line.
Two major concerns in offshore production are Methane Hydrates and Paraffin Plugs. They may stop wells for months, causing high financial losses. Sometimes, depressurization techniques allow hydrate removal. Another strategy is using coiled tubing or a similar unit to perform local heating or solvent injection. However, frequently these strategies are not successful. In those cases, a rig may be a suitable but expensive solution, or the line may be lost. The present project aimed to develop a robotic system capable of performing controlled local heating for removing Paraffin and Methane Hydrates. The robotic system accesses the line from the production platform. It uses a peristaltic self-locking traction system to exert high traction forces. An umbilical with quasi-neutral buoyancy and low friction coefficient reduces the cable traction. It also allows moving upwards and in pipes with a large number of curves, something that coiled tubing and similar units cannot. Carbon fiber vessels and compact circuits allowed downsizing it to move inside 4-inch flexible pipes. Initially, a theoretical model for the local heating system allowed the evaluation of this strategy. A prototype allowed testing the system in a cooled environment. This heating system removes the obstruction in a controlled manner, avoiding damages to the polymeric layer of the flexible line. Simultaneously, a modified Euler-Eytelwein equation allowed the development of a theoretical model for cable traction. Experimental tests validated this model. Those tests used straight and curved pipes, both empty and filled with fluid and using different loads. Also, the 20 kN (4.3 kip) traction system was modeled theoretically considering the self-locking system, the contact with the wall, and a diameter range. Prototypes allowed the comparison between electric and hydraulic systems. Those prototypes also validated the traction capacity. Besides, force transmission from the traction system to the umbilical occurs through an external aramid layer. A Universal Testing Machine validated the traction resistance of the external layer. Furthermore, carbon fiber vessels protect the electronic circuits from oil and external pressure. The power electronics designed can provide up to 4kW for the motors to operate the hydraulic system. The onboard computer runs with a real-time operational system and, together with a sensors network, is responsible for monitoring the pressures, temperatures, currents and tensions throughout the entire robot. The fail-safe design allows the robot to operate without risks of catastrophic accidents and guarantees that it can be pulled out at any time. A pressure vessel validated the collapse resistance, reaching more than 700 bar (10.000 psi). In addition, exhaustive integration tests validated the onboard electronics and the surface control system. Finally, factory tests validated the umbilical design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.