Melting of an ice by a steam is sometimes employed, for example, to remove a frost, an ice, and a snow that adhered to the structure surface. It is usually regarded that the melting performance by steam is naturally higher than that by high-temperature dry air due to the effect of large latent heat of condensation. In the present study, the effect of latent heat of condensation on the melting performance of ice by steam has been investigated experimentally. Both in the flow of a saturated steam and a dry air at 100°C, the melting performance of horizontal ice cylinder were investigated under a variety of Reynolds number. A horizontal ice cylinder of 120mm diameter was adopted as the test piece. The melting rate in a flow of both saturated steam and dry air at 100°C was measured. The Reynolds number of the ambient flow was set at 550, 910, and 1270. The melting heat transfer characteristic was evaluated from the melting rate that was assessed from the shape of the ice cylinder. The experimental results show that the merits of the melting of an ice by a steam are not only the effect of latent heat of condensation, but also the existence of thick liquid film with temperature difference of 100°C.