Abstract-We discuss the shot noise properties of carbon-based transistors in which the channel is laterally confined, either in the form of graphene nanoribbons or of carbon nanotubes. We show with an simple compact model and with computationallyintensive statistical simulations that electron-electron interaction can lead to a significant suppression of shot noise, often overlooked when the device is described with the LandauerButtiker formalism. Finally, we show that interband tunneling can play a significant role in enhancing shot noise due to exchange of holes between drain and channel, that is a peculiar effect observable in the case of channel materials with very small energy gaps.