Abstract-The adoption of High-Level Synthesis (HLS) tools has significantly reduced accelerator design time. A complex scaling problem that remains is the data transfer bottleneck. To scale-up performance accelerators require huge amounts of data, and are often limited by interconnect resources. In addition, the energy spent by the accelerator is often dominated by the transfer of data, either in the form of memory references or data movement on interconnect. In this paper we drastically reduce accelerator communication by exploration of computation reordering and local buffer usage. Consequently, we present a new analytical methodology to optimize nested loops for intertile data reuse with loop transformations like interchange and tiling. We focus on embedded accelerators that can be used in a multi-accelerator System on Chip (SoC), so performance, area, and energy are key in this exploration. 1) On three common embedded applications in the image/video processing domain (demosaicing, block matching, object detection), we show that our methodology reduces data movement up to 2.1x compared to the best case of intra-tile optimization. 2) We demonstrate that our small accelerators (1-3% FPGA resources) can boost a simple MicroBlaze soft-core to the performance level of a high-end Inteli7 processor.