We study the dynamical invariant for dissipative three coupled oscillators mainly from the quantum mechanical point of view. It is known that there are many advantages of the invariant quantity in elucidating mechanical properties of the system. We use such a property of the invariant operator in quantizing the system in this work. To this end, we first transform the invariant operator to a simple one by using a unitary operator in order that we can easily manage it. The invariant operator is further simplified through its diagonalization via three-dimensional rotations parameterized by three Euler angles. The coupling terms in the quantum invariant are eventually eliminated thanks to such a diagonalization. As a consequence, transformed quantum invariant is represented in terms of three independent simple harmonic oscillators which have unit masses. Starting from the wave functions in the transformed system, we have derived the full wave functions in the original system with the help of the unitary operators.