Silicon dioxide (SiO2), commonly known as silica, is a naturally occurring mineral extracted from the Earth’s crust. It is widely used in commercial products such as food, medicine, and dental ceramics. There are few studies on the health effects of pyrogenic and colloidal silica after ingestion. No research has compared the impact of microscale morphologies on mitochondrial activity in colon cells after acute exposure. The results show that crystalline and amorphous silica had a concentration-independent effect on cells, with an initial increase in mitochondrial activity followed by a decrease. Vitreous silica did not affect cells. Diatomaceous earth and pyrogenic silica had a concentration-dependent response, causing a reduction in mitochondrial activity as concentration increased. Diatomaceous earth triggered the highest cellular response, with mitochondrial activity ranging from 78.84% ± 12.34 at the highest concentration (1000 ppm) to 62.54% ± 17.43 at the lowest concentration (0.01 ppm) and an average H2O2 concentration of 1.48 ± 0.15 RLUs. This research advances our understanding of silica’s impact on human gastrointestinal cells, highlighting the need for ongoing exploration. These findings can improve risk mitigation strategies in silica-exposed environments.