Vehicular communications allow vehicles to connect with other vehicles and network infrastructures in order to facilitate the transfer of real-time information and dependable transportation. This paper proposes a system that connects vehicles to the network (base station) in two phases using transceiversequipped roadside infrastructures, such as signboards, traffic lights, and street lights, as intermediary relay nodes. In the first phase, the information transfer occurs from vehicles to infrastructure using a radio-frequency (RF) link. The second phase includes establishing communication from the infrastructure to the base station using hybrid free-space optics (FSO)/RF link. In modeling the FSO link, we consider factors like atmospheric attenuation, pointing errors, and atmospheric turbulence-induced fading, which can affect FSO performance. For this set-up, we derive the accurate expressions for the outage probability, system throughput, average symbol error rate, and average end-toend delay. Numerical results corroborate the dependency of the time allocation factor α for the vehicle-to-infrastructure link on the vehicle transmit power. Furthermore, the results elucidate the impact of the length of the transmitted packet and FSO link distance on average end-to-end delay performance. The increase in distance between infrastructure and base station can be compensated by reducing the length of packets to achieve desirable delay performance.