This study was focused on the performance of the pile force at the lateral load of an arched bridge. The effect of the compression of arch bridges creates a large horizontal load. Therefore, it is one of the most important factors in the dimensioning of piles. The study aims to make a comparative study between the results obtained in the field, and those obtained by a 3D model defined as a Finite Element (FE) of a drilled pile, subjected to different lateral loads applied at exact time intervals. Moreover, the study was intended to determine the influence of the lateral load applied to a different pile diameter using the FE model. Thus, the unified FEA software Abaqus™ by Dassault systèmes®carried out various processing procedures, namely soil FE modeling, pile FE modeling, soil-pile interface, Mesh, and boundary conditions, to carry out an effective and predictive piles behavior analysis. Based on the Mohr-Coulomb criterion, the soil is considered to be stratified with elastoplastic behavior, whereas the Reinforcement Concrete Pile (RCP) was assumed to be linear isotropic elastic, integrating the concrete damage plasticity. Since the bridge is an arched bridge, the lateral load induced was applied to the head of the piles through a concentrated force to check the pile strength, for which the displacement, stress and strain were taken into account throughout, along the pile depth. The lateral displacement of the pile shows a deformation of the soil as a function of its depth, with different layers crossed with different lateral loads applied. Thus, from the study comparing the results of the FE measurements with the data measured in the field, added to the statistical analyses are as follows: Decrease of the displacement and stress according to the diameter, taking into account the different diameter. The foundations receive loads of the superstructure to be transmitted to the ground. Thus, the piles are generally used as a carrier transmitting loads on the ground. One of the important factors in the durability of the bridge depends more on the strength of these piles. This makes it necessary to study the reinforced concrete foundations because of their ability to resist loads of the structure, and the vertical and lateral loads applied to the structure. This implies an evaluation of the responses of the RCP according to the different lateral loads.