The Internet of Things (IoT) devices generate a large amount of data over networks; therefore, the efficiency, complexity, interfaces, dynamics, robustness, and interaction need to be re-examined on a large scale. This phenomenon will lead to seamless network connectivity and the capability to provide support for the IoT. The traditional IoT is not enough to provide support. Therefore, we designed this study to provide a systematic analysis of next-generation advancements in the IoT. We propose a systematic catalog that covers the most recent advances in the traditional IoT. An overview of the IoT from the perspectives of big data, data science, and network science disciplines and also connecting technologies is given. We highlight the conceptual view of the IoT, key concepts, growth, and most recent trends. We discuss and highlight the importance and the integration of big data, data science, and network science along with key applications such as artificial intelligence, machine learning, blockchain, federated learning, etc. Finally, we discuss various challenges and issues of IoT such as architecture, integration, data provenance, and important applications such as cloud and edge computing, etc. This article will provide aid to the readers and other researchers in an understanding of the IoT’s next-generation developments and tell how they apply to the real world.