Rapid development of the integrated optics and photonics makes it necessary to create cheap and simple technology of optical waveguide systems formation. Photolithography methods, widely used for these tasks recently, require the production of a number of precision amplitude and phase masks. This fact makes this technology expensive and the formation process long. On another side there is a cheap and one-step holographic recording method in photopolymer compositions. Parameters of the waveguide system formed by this method are determined by recording geometry and material's properties. Besides, compositions may contain liquid crystals that make it possible to create elements, controllable by external electric field. In this chapter, the theoretical model of the holographic formation of controllable waveguide channels system in photopolymer liquid crystalline composition is developed. Special attention is paid to localization of waveguides in the media caused by light field attenuation during the formation process.