As a traditional numerical simulation method for pantograph–catenary interaction research, the pantograph–catenary finite element model cannot be applied to the real-time monitoring of pantograph–catenary contact force, and the computational cost required for the multi-parameter joint optimization of the pantograph–catenary system with the finite element model is very high. In this paper, based on the selective crow search algorithm–radial basis function (SCSA-RBF) network, the time-domain signal of the panhead acceleration, which can be obtained in real-time through non-contact test technology, is taken as the boundary condition to directly solve the pantograph dynamic equation and a data-physics coupling model that can quickly predict the pantograph–catenary interaction is proposed. The prediction model is trained and verified using the dataset generated through the finite element model. Furthermore, the prediction model is applied to the multi-parameter joint optimization of six pantograph dynamic parameters and nine pantograph dynamic parameters, considering nonlinear panhead stiffness, and optimization suggestions under various speeds and filtering frequencies are given.