While the effects of axial compression on beams have long been known, the effect of tensile axial loads on one-sided transversely cracked beams is less known. The crack namely shifts the position of the resultant of the axial normal stresses deeper into the uncracked part of the cross-section, and the crack tends to open, causing a transverse displacement. Therefore, this paper focuses on empirical modeling of the considered phenomenon for slender prismatic beams in order to establish a suitable 1D computational model based on detailed 3D FE mesh results. This goal can be achieved through the already established simplified model, where the crack is represented by an internal hinge endowed with a rotational spring. Several analyses of various beams differing in geometry, crack locations, and boundary conditions were executed by implementing 3D FE meshes to establish the appropriate model’s bending governing differential equation. After that, the corresponding parameter definitions were calibrated from the database of 3D FE models. By redefining the model’s input parameters, a suitable solution is achieved, offering a good balance between the results’ accuracy and the required computational effort. The functionality of the newly obtained solutions was verified through some comparative case studies that supplement the derivations.