Abstract-We introduce the concept of the universal virtual lab, an extension to the virtual lab platform of [30], enabling a fast and accurate simulation of wideband nonlinear DWDM systems. The universal virtual lab is compliant with non-ideal transmitter and receiver architectures, distributed optical filters in the optical link, inter-channel stimulated Raman scattering, and it provides accurate performance predictions even when adaptive equalization methods are applied. In comparison with the conventional full-bandwidth split step Fourier transform method, we show with different test scenarios that the universal virtual lab provides accuracy errors below 0.1 dBQ and 0.09 bit/4D-symb in Q-factor and GMI assessments respectively, with runtime speedup factors exceeding 1000. We also report performance assessments in an ultra-wideband (11 THz) C+L system and discuss equalization gain under different compensation scenarios. The estimated speedup factor with respect to the fullbandwidth split step Fourier transform method is assessed to be greater than 35,000.