Wireless and mobile communication systems have evolved considerably in recent years. Seamless mobility is one of the main challenges facing mobile users in wireless and mobile systems. However, highly mobile users lead to a high number of handover failures and unnecessary handovers due to the limited resources and coverage limitations with a high mobile speed. The traditional handover models are unable to cope with high mobile users in such environments. This paper proposes, an intelligent handover decision approach to minimize the probability of handover failures and unnecessary handovers whilst maximizing the usage of resources in highly mobile environments. The proposed approach is based on modelling the system using a Markov chain to enhance the system's performance in terms of blocking probability, mean queue length and transmission delay. The results are compared with the traditional handover model. Simulation is also employed to validate the accuracy of the proposed model. Numerical results have shown that the proposed method outperforms the traditional algorithm over a wide range of handover failures and significantly reduced the number of such failures and unnecessary handovers. The results of this study show that quality if service (QoS) measures of such systems can be evaluated efficiently and accurately using the proposed analytical model. However, the performance results have also shown that it is still necessary to explore an effective model for operational spaces. In addition, the proposed model can also be adapted to various types of networks considering the high speed of the mobile user and the radius of the network.