To predict the temperature distribution of the tooth surface of a herringbone gear pair, a numerical method for the determination of frictional heat generation was proposed by establishing a thermal elastohydrodynamic lubrication (TEHL) model in the meshing zone taking surface roughness into account. According to the real micro topography of the tooth surface measured by a non-contact optical system and loaded tooth contact analysis, the friction coefficient was obtained by a TEHL analysis and then the heat generation in the contact zone was determined. With the combination of heat generation and heat dissipation analysis, the single tooth model of the herringbone gear pair due to the finite element method (FEM) was proposed and the steady-state temperature distribution of the tooth surfaces was predicted by FEM simulations. The simulation and the experimental results demonstrated good agreement, which verified the feasibility of the present numerical method.