In radiotherapy treatment planning, the absorbed doses are subject to executional and preparational errors, which propagate to plan quality metrics. Accurately quantifying these uncertainties is imperative for improved treatment outcomes. One approach, analytical probabilistic modeling (APM), presents a highly computationally efficient method. This study evaluates the empirical distribution of dose–volume histogram points (a typical plan metric) derived from Monte Carlo sampling to quantify the accuracy of modeling uncertainties under different distribution assumptions, including Gaussian, log-normal, four-parameter beta, gamma, and Gumbel distributions. Since APM necessitates the bivariate cumulative distribution functions, this investigation also delves into approximations using a Gaussian or an Ali–Mikhail–Haq Copula. The evaluations are performed in a one-dimensional simulated geometry and on patient data for a lung case. Our findings suggest that employing a beta distribution offers improved modeling accuracy compared to a normal distribution. Moreover, the multivariate Gaussian model outperforms the Copula models in patient data. This investigation highlights the significance of appropriate statistical distribution selection in advancing the accuracy of uncertainty modeling in radiotherapy treatment planning, extending an understanding of the analytical probabilistic modeling capacities in this crucial medical domain.