In this paper, effects of a wedge on the performance of planing craft in calm water are experimentally investigated. Experiments are carried out on three different cases distinguished by the wedge type. The model, built of fiberglass, is a prismatic planing hull with deadrise angle of 24 degrees. Towing tests are conducted at different Froude numbers ranging from 0.21 to 2.1. The total trim angle, resistance, rise up at the CG as well as stern and bow, keel wetted length, chine wetted length, stagnation angle, and the length of stagnation line are measured. They are used to study the effect of installing a wedge on the performance as well as the effect of height on the hydrodynamic characteristics. Based on the observations made, it is concluded that, when the wedge is applied to the hull, the risk of model exhibiting instability diminishes, while total trim angle largely decreases, keel wetted length is enlarged, wetted surface becomes thinner, CG rise up is lowered, and the resistance is reduced. Moreover, experimental measurements and theoretical 2D+T theory are combined to bring deeper insight about physics of the flow and pressure distribution when a wedge is installed on the bottom of a planing hull.