1978
DOI: 10.1021/jo00404a002
|View full text |Cite
|
Sign up to set email alerts
|

Analytical solution to the Curtin-Hammett/Winstein-Holness kinetic system

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

1
22
0
1

Year Published

1978
1978
2020
2020

Publication Types

Select...
8

Relationship

2
6

Authors

Journals

citations
Cited by 36 publications
(24 citation statements)
references
References 7 publications
1
22
0
1
Order By: Relevance
“…Unfortunately, an analytical solution is not possible for the more complicated Equation (2) . Consequently, the determination of reaction‐rate constants is extremely complicated, if not impossible, for some sets of Equation (2) systems, even when the experiments are conducted under pseudo‐first‐order conditions, just as David England and Werner Hentschel discovered to their certain dismay as described by Huisgen…”
Section: Introductionsupporting
confidence: 90%
See 1 more Smart Citation
“…Unfortunately, an analytical solution is not possible for the more complicated Equation (2) . Consequently, the determination of reaction‐rate constants is extremely complicated, if not impossible, for some sets of Equation (2) systems, even when the experiments are conducted under pseudo‐first‐order conditions, just as David England and Werner Hentschel discovered to their certain dismay as described by Huisgen…”
Section: Introductionsupporting
confidence: 90%
“…For all relative values of k ij in Equation (3) systems, an analytical solution was determined by Seeman and William A. Farone, and a general equation at reaction completion was provided by Nicolai Zefirov . Unfortunately, an analytical solution is not possible for the more complicated Equation (2) .…”
Section: Introductionmentioning
confidence: 99%
“…Hammett en los años cincuenta, con la idea de proporcionar un tratamiento para diferenciar la distribución de una población conformacional en el estado basal (en equilibrio) de un sistema conformacionalmente móvil con la proporción del producto final de una reacción en donde participan ambos confórmeros (Gold, 1983). Es decir, si en una reacción química se obtiene un producto (A 1 ) a partir de un isómero conformacional (A 2 ) y otro diferente (A 4 ) a partir del otro confórmero (A 3 ) (suponiendo que estos dos isómeros se interconvierten rápidamente en relación con la velocidad de formación de los productos y que los productos no se interconvierten), la composición de los productos no depende prácticamente de las proporciones relativas de los isómeros conformacionales en el sustrato, sino de la diferencia en las energías libres de Gibbs (∆G ≠ ) de los estados de transición respectivos, figura 3 (Seeman, 1978). De acuerdo con la figura 3, la proporción de los productos se da por la ecuación.…”
Section: Kw-hunclassified
“…qftzitrog(~tz It is interesting to calculate the second n-bond energy of nitrogen by using data from s t~~d i e s of thermal decomposition of several azo conipounds. This is done using the sequence of reactions he mechanism of nitrogen formation is assumed to be A completc solution of this nlechanisnl has been rcportetl by Seeman and Farone (15). If equilibriuni is maintained between the two isomers.…”
Section: Rate Of Decotrlj>ositio~z Ofthe Trvo Isomersmentioning
confidence: 99%