Several options are available for right ventricular outflow tract reconstruction, including commercially available bovine jugular vein and cryo-preserved homografts. Homograft non-availability and the problems of commercially available conduits led us to develop indigenously processed bovine jugular vein conduits with competent valves. They were made completely acellular and strengthened by non-conventional cross-linking without disturbing the extracellular matrix, which improved the luminal surface characteristics for hemocompatibility. Biocompatibility in vitro and in vivo, along with thermal stability, matrix stability, and mechanical strength have been evaluated. Sixty-nine patients received these conduits for right ventricular outflow tract reconstruction. Seven conduits dilated and 4 required replacement. To counteract dilatation, biodegradable polymeric nanofibers in various combinations and in isolation (collagen, polycaprolactone, polylactic acid) were characterized and used to reinforce the conduit circumferentially. Physical validation by mechanical testing, scanning electron microscopy, and in-vitro cytotoxicity was conducted. Thermal stability, spectroscopy studies of the polymer, and preclinical studies of the coated bovine jugular vein in animals are in progress. The feasibility studies have been completed, and the final polymer selection depends on evaluation of the functional superiority of the coated bovine jugular vein.