As a result of a buried water pipe unsealing, water often flows from the pipe to the soil surface, washing out the solid particles of soil and creating the so-called suffosion holes. It is a dangerous phenomenon, especially in urbanized areas, where it poses a threat to human safety and the stability of infrastructure. Uncontrolled outflows of water from water pipes belong to the main causes of suffosion in cities, occur in all water networks around the world and are difficult to predict. Therefore, it seems to be important to determine the size of the so-called the protection zone, which is the area around the potential leak where, in the event of a water pipe failure, it would be possible for water to flow in the soil. The analysis of the suffosion holes distribution around the place of leakage may be helpful in determining the size of the protection zone. Previous studies have shown that this distribution is random. Thus, the structure consisting of suffusion holes creates a certain geometric shape, which is difficult to describe using the classical concepts of Euclidean geometry. The study showed that this structure meets the conditions for probabilistic fractals, which means that elements of fractal geometry can be used to determine the size of the protection zone.