Abstract:Recent studies have revealed that Machine Learning (ML) models are vulnerable to adversarial perturbations. Such perturbations can be intentionally or accidentally added to the original inputs, evading the classifier's behavior to misclassify the crafted samples. A widely-used solution is to retrain the model using data points generated by various attack strategies. However, this creates a classifier robust to some particular evasions and can not defend unknown or universal perturbations. Counterfactual explan… Show more
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.