Abstract. We present a formal verification approach for detecting design issues related to user interaction, with a focus on user interface of medical devices. The approach makes a novel use of configuration diagrams proposed by Rushby to formally verify important human factors properties of user interface implementation. In particular, it first translates the software implementation of user interface into an equivalent formal specification, from which a behavioral model is constructed using theorem proving; human factors properties are then verified against the behavioral model; lastly, a comprehensive set of test inputs are produced by exploring the behavioral model, which can be used to challenge the real interface implementation and to ensure that the issues detected in the behavior model do apply to the implementation. We have prototyped the approach based on the PVS proof system, and applied it to analyze the user interface of a real medical device. The analysis detected several interaction design issues in the device, which may potentially lead to severe consequences.