Analyzing Longitudinal Health Screening Data with Feature Ensemble and Machine Learning Techniques: Investigating Diagnostic Risk Factors of Metabolic Syndrome for Chronic Kidney Disease Stages 3a to 3b
Ming-Shu Chen,
Tzu-Chi Liu,
Mao-Jhen Jhou
et al.
Abstract:Longitudinal data, while often limited, contain valuable insights into features impacting clinical outcomes. To predict the progression of chronic kidney disease (CKD) in patients with metabolic syndrome, particularly those transitioning from stage 3a to 3b, where data are scarce, utilizing feature ensemble techniques can be advantageous. It can effectively identify crucial risk factors, influencing CKD progression, thereby enhancing model performance. Machine learning (ML) methods have gained popularity due t… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.