Analyzing meteorological parameters using Pearson correlation coefficient and implementing machine learning models for solar energy prediction in Kuching, Sarawak
Geoffrey Tan,
Hadi N. Afrouzi,
Jubaer Ahmed
et al.
Abstract:Solar energy is one of the clean renewable energy sources that can offset the rising consumption of fossil fuels. However, the meteorological parameters, such as solar irradiance, ambient and solar module temperatures, relative humidity, etc., constantly change, and so does the solar power generation. Such variations cause instability in the power grid operation due to injecting an unpredicted amount of power. Hence, solar energy prediction models capable of learning from past weather data and predicting futur… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.