Citation for published version (APA):Long, X., Haakma, R., Rolink, J., Fonseca, P., & Aarts, R. M. (2015). Improving sleep/wake detection via boundary adaptation for respiratory spectral features. In Proceedings of the 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC'15), 25-29 August 2015, Milan, Italy (pp. 374-377 Please check the document version of this publication:• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.• The final author version and the galley proof are versions of the publication after peer review.• The final published version features the final layout of the paper including the volume, issue and page numbers.
Link to publicationGeneral rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.• You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal.If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement: www.tue.nl/taverne
Take down policyIf you believe that this document breaches copyright please contact us at: openaccess@tue.nl providing details and we will investigate your claim. Abstract-In previous work, respiratory spectral features have been successfully used for sleep/wake detection. They are usually extracted from several frequency bands. However, these traditional bands with fixed frequency boundaries might not be the most appropriate to optimize the sleep and wake separation. This is caused by the between-subject variability in physiology, or more specifically, in respiration during sleep. Since the optimal boundaries may relate to mean respiratory frequency over the entire night. Therefore, we propose to adapt these boundaries for each subject in terms of his/her mean respiratory frequency. The adaptive boundaries were considered as those being able to maximize the separation between sleep and wake states by means of their mean power spectral density (PSD) curves overnight. Linear regression models were used to address the association between the adaptive boundaries and mean respiratory frequency based on training data. This was then in turn used to estimate the adaptive boundaries of each test subject. Experiments were c...