In this study, the seismic performance of an ancient pagoda with significant historical and cultural values in China is upgraded by using overall friction pendulum bearing (OFPB) seismic isolation technology, This technique can be used to isolate the pagoda without damaging it. By implementing the OFPB seismic isolation retrofit on the pagoda and comparing and analyzing it with the unretrofitted seismic model, the response of the pagoda under the action of nine seismic waves of three types, namely, near-field earthquakes, far-field earthquakes, and common earthquakes, is investigated. The results show that the OFPB seismic isolation technique significantly reduces the seismic response of the ghats, in which the acceleration amplification factor is reduced by a maximum of 82.46%, the inter-story displacement is reduced by a maximum of 85.15%, and the base shear force is reduced by a maximum of 96.76%. In addition, the tensile damage of the ghats with OFPB seismic isolation was significantly controlled. While the model without seismic isolation has serious damage under the same seismic action and even faces the risk of collapse. The results of the study confirm that the OFPB seismic isolation technology plays a key role in improving the seismic performance of the tower, which is of great theoretical and practical significance to the protection of the tower, and provides an effective technical way for the protection of the tower in the seismic-prone areas.