2011
DOI: 10.1016/j.eswa.2010.06.069
|View full text |Cite
|
Sign up to set email alerts
|

Analyzing the performance of fuzzy cognitive maps with non-linear hebbian learning algorithm in predicting autistic disorder

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

1
38
0
2

Year Published

2011
2011
2022
2022

Publication Types

Select...
5
4

Relationship

0
9

Authors

Journals

citations
Cited by 98 publications
(41 citation statements)
references
References 19 publications
1
38
0
2
Order By: Relevance
“…[22] FCM trained with Active Hebbian Learning algorithm to grade brain tumors was shown to give a better diagnostic output compared to fuzzy decision trees for low and high grade brain tumors. In another study, FCM has been used to predict the autistic behavior [23,24]. Another FCM tool has been used to diagnose meningitis and based on the severity of the disease, decisions regarding the most appropriate treatment were recommended [25].…”
Section: Literature Surveymentioning
confidence: 99%
“…[22] FCM trained with Active Hebbian Learning algorithm to grade brain tumors was shown to give a better diagnostic output compared to fuzzy decision trees for low and high grade brain tumors. In another study, FCM has been used to predict the autistic behavior [23,24]. Another FCM tool has been used to diagnose meningitis and based on the severity of the disease, decisions regarding the most appropriate treatment were recommended [25].…”
Section: Literature Surveymentioning
confidence: 99%
“…Kannappan et al (2011) proponen el empleo de mapas cognitivos difusos para modelar y predecir conductas en niños autistas. Su trabajo descansa en la combinación de modelos de redes neuronales con las técnicas clásicas de construcción de mapas cognitivos difusos.…”
Section: Figura 1: Representación De Conceptos En Un Mapa Conceptualunclassified
“…Dado que el número de conceptos es bajo, no se hace necesario recurrir a otras técnicas complementarias como se propone en los trabajos de Stach et al (2010) y Kannappan et al (2011). En consecuencia es importante observar que estos resultados fueron obtenidos únicamente a partir de la construcción de la matriz de adyacencia mediante la opinión de expertos altamente calificados en la problemática concreta que se propuso analizar y que en ningún momento fue necesario recurrir a otras técnicas adicionales para optimizar el procedimiento de construcción de un MCD.…”
unclassified
“…Both, Faisal (Faisal et al, 2010) and Gil (Gil et al, 2009), also mentioned the possibility of increasing the accuracy of their systems by combining artificial neural networks with fuzzy inference techniques. This approach uses Kannappan (Kannappan et al, 2010) for design the system for prediction of autistic disorders using fuzzy cognitive maps with nonlinear Hebb learning algorithm. Fuzzy cognitive maps combine the strengths and virtues of fuzzy logic and neural networks.…”
Section: Artificial Neural Network (Ann)mentioning
confidence: 99%