Suppose a large and dense point cloud of an object with complex geometry is available that can be approximated by a smooth univariate function. In general, for such point clouds the “best” approximation using the method of least squares is usually hard or sometimes even impossible to compute. In most cases, however, a “near-best” approximation is just as good as the “best”, but usually much easier and faster to calculate. Therefore, a fast approach for the approximation of point clouds using Chebyshev polynomials is described, which is based on an interpolation in the Chebyshev points of the second kind. This allows to calculate the unknown coefficients of the polynomial by means of the Fast Fourier transform (FFT), which can be extremely efficient, especially for high-order polynomials. Thus, the focus of the presented approach is not on sparse point clouds or point clouds which can be approximated by functions with few parameters, but rather on large dense point clouds for whose approximation perhaps even millions of unknown coefficients have to be determined.