While the use of large tropical trees to predict aboveground biomass (AGB) in forests has previously been studied, the applicability of this approach in arid regions remains unquantified. In the natural forests of arid mountains of Northwestern China, this study collected individual tree data from 105 plots across 11 sites through field measurements. The objective was to assess the feasibility of using large trees for predicting plot AGB in these natural forests of arid mountains. This entailed determining the contribution of large trees, based on which a plot AGB prediction model was constructed. This study also aimed to identify the optimal number of large trees needed for accurate AGB prediction. The findings indicate that within the natural forests of arid mountains, only seven large trees (approximately 12% of the trees in a plot) are necessary to account for over 50% of the plot AGB. By measuring 18 large trees within a plot, this study achieved a precise plot AGB estimation, resulting in a model rRMSE of 0.27. The regression fit R2 for the predicted AGB and the estimated AGB was 0.79, effectively aligning the predicted and measured AGB. In the Tianshan Mountains’ natural forests, the prediction model yielded further improvements with an rRMSE of 0.13 and a remarkable regression R2 of 0.92 between predicted and estimated AGB. However, due to variances in tree size distribution and tree species biomass, the Altai Mountains’ natural forest was found to be unsuitable for predicting plot AGB using large trees. This study establishes that large trees can effectively represent plot AGB in the natural forests of arid mountains. Employing forest surveys or remote sensing to collect data from a few large trees instead of the entire tree population enables accurate plot AGB prediction. This research serves as the initial quantification of large tree utilization for plot AGB prediction in the natural forests of arid mountains, carrying substantial implications for future arid forest inventories, carbon accounting, and the formulation of prudent conservation strategies.