2022
DOI: 10.1016/j.ast.2022.107350
|View full text |Cite
|
Sign up to set email alerts
|

Analyzing thermal buckling in curvilinearly stiffened composite plates with arbitrary shaped cutouts using isogeometric level set method

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
5
0

Year Published

2022
2022
2024
2024

Publication Types

Select...
5
2

Relationship

0
7

Authors

Journals

citations
Cited by 30 publications
(6 citation statements)
references
References 43 publications
0
5
0
Order By: Relevance
“…As part of future developments we will try to look for even more state-of-the-art constraint handling procedures with higher efficacy across a discrete feasible space. Consequently, we are also researching in the use of this constrained optimization algorithm for solving mechanical systems problems like thermal buckling load [99] utilising isogeometric finite element analysis of stiffened laminated composite plates [100]. Also, we would like to investigate the performance of the algorithm across a wide range of transformation operations like bias, f 0.0000e+00 4.2089e+03 -1.7989e+04 -9.9986e-01 -3.6466e+03 9.9790e-01 6.9962e-01 -1.0000e+00 v 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 Median f 0.0000e+00 6.2822e+03 -8.7264e+03 -9.9262e-01 -3.2793e+03 1.6035e+00 1.1227e+00 -2.2630e-01 v 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 4.4616e-01 0.0000e+00 Mean f 5.1768e+00 6.1573e+03 -9.5337e+03 -9.9042e-01 -3.2717e+03 1.5354e+00 1.3067e+00 -4.1083e-01 v 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 1.2211e-02 6.1918e-01 0.0000e+00 Worst f 4.1790e+01 6.6728e+03 -3.8688e+03 -9.6503e-01 -2.7061e+03 2.2681e+00 2.3718e+00 6.1899e-02 v 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 7.2799e-02 1.8102e+00 0.0000e+00 Std f 1.1940e+01 5.6421e+02 3.8138e+03 8.8730e-03 2.1472e+02 4.1420e-01 4.7718e-01 4.5155e-01 v 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 1.8026e-02 6.5119e-01 0.0000e+00 FR c v 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 Median f 7.1534e-01 1.0000e-01 5.5000e+00 2.9248e+00 2.2311e+04 4.3727e+04 2.8338e+03 1.1756e-02 v 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 Mean f 7.4605e-01 1.0001e-01 5.1650e+00 2.5176e+00 2.2333e+04 4.4398e+04 2.7687e+03 1.5230e-02 v 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 Worst f 1.0194e+00 1.0001e-01 2.5359e+01 2.9248e+00 2.2474e+04 6.3315e+04 2.9117e+03 9.3064e-02 v 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 Std f 1.5561e-01 1.3136e-05 1.0870e+01 5.3610e-01 4.5170e+01 9.7984e+03 1.2283e+02 1.6230e-02 v 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 FR c f 2.5000e-03 1.5902e+01 4.4079e-02 0.0000e+00 1.2498e-01 5.2325e-01 0.0000e+00 0.0000e+00 v 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 Median f 2.5000e-03 6.9090e+02 2.7365e-01 0.0000e+00 1.2555e-01 5.2883e-01 1.9380e-01 3.7666e+00 v 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 Mean f 2.5000e-03 7.9146e+02 3.1193e-01 0.0000e+00 1.2951e-01 5.3127e-01 1.2245e+00 3.4398e+00 v 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 Worst f 2.5000e-03 1.8843e+03 6.0141e-01 0.0000e+00 1.8938e-01 5.4981e-01 7.4791e+00 4.3945e+00 v 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 Std f 4.4262e-19 5.5281e+02 1.6515e-01 0.0000e+00 1.2938e-02 6.5552e-03 2.1986e+00 1.1048e+00 v 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 FR c f -3.5453e+18 2.4811e+01 1.2123e+02 4.9896e+03 1.1493e+06 3.5975e-04 0.0000e+00 -3.2217e+04 v 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 Median f -4.5838e+13 5.9894e+01 3.4911e+02 5.4819e+03 1.6227e+06 1.1425e-03 4.3450e-19 -3.2217e+04 v 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 Mean f -1.5007e+17 5.8173e+01 3.3100e+02 5.9970e+03 1.6213e+06 1.3582e-03 7.8479e-11 -3.2217e+04 v 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 Worst f -1.6765e+11 9.6575e+01 4.5297e+02 1.4182e+04 2.1506e+06 6.0318e-03 1.5603e-09 -3.2217e+04 v 0.0000e+00 0.0000e+00 0....…”
Section: Discussionmentioning
confidence: 99%
See 2 more Smart Citations
“…As part of future developments we will try to look for even more state-of-the-art constraint handling procedures with higher efficacy across a discrete feasible space. Consequently, we are also researching in the use of this constrained optimization algorithm for solving mechanical systems problems like thermal buckling load [99] utilising isogeometric finite element analysis of stiffened laminated composite plates [100]. Also, we would like to investigate the performance of the algorithm across a wide range of transformation operations like bias, f 0.0000e+00 4.2089e+03 -1.7989e+04 -9.9986e-01 -3.6466e+03 9.9790e-01 6.9962e-01 -1.0000e+00 v 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 Median f 0.0000e+00 6.2822e+03 -8.7264e+03 -9.9262e-01 -3.2793e+03 1.6035e+00 1.1227e+00 -2.2630e-01 v 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 4.4616e-01 0.0000e+00 Mean f 5.1768e+00 6.1573e+03 -9.5337e+03 -9.9042e-01 -3.2717e+03 1.5354e+00 1.3067e+00 -4.1083e-01 v 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 1.2211e-02 6.1918e-01 0.0000e+00 Worst f 4.1790e+01 6.6728e+03 -3.8688e+03 -9.6503e-01 -2.7061e+03 2.2681e+00 2.3718e+00 6.1899e-02 v 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 7.2799e-02 1.8102e+00 0.0000e+00 Std f 1.1940e+01 5.6421e+02 3.8138e+03 8.8730e-03 2.1472e+02 4.1420e-01 4.7718e-01 4.5155e-01 v 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 1.8026e-02 6.5119e-01 0.0000e+00 FR c v 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 Median f 7.1534e-01 1.0000e-01 5.5000e+00 2.9248e+00 2.2311e+04 4.3727e+04 2.8338e+03 1.1756e-02 v 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 Mean f 7.4605e-01 1.0001e-01 5.1650e+00 2.5176e+00 2.2333e+04 4.4398e+04 2.7687e+03 1.5230e-02 v 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 Worst f 1.0194e+00 1.0001e-01 2.5359e+01 2.9248e+00 2.2474e+04 6.3315e+04 2.9117e+03 9.3064e-02 v 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 Std f 1.5561e-01 1.3136e-05 1.0870e+01 5.3610e-01 4.5170e+01 9.7984e+03 1.2283e+02 1.6230e-02 v 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 FR c f 2.5000e-03 1.5902e+01 4.4079e-02 0.0000e+00 1.2498e-01 5.2325e-01 0.0000e+00 0.0000e+00 v 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 Median f 2.5000e-03 6.9090e+02 2.7365e-01 0.0000e+00 1.2555e-01 5.2883e-01 1.9380e-01 3.7666e+00 v 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 Mean f 2.5000e-03 7.9146e+02 3.1193e-01 0.0000e+00 1.2951e-01 5.3127e-01 1.2245e+00 3.4398e+00 v 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 Worst f 2.5000e-03 1.8843e+03 6.0141e-01 0.0000e+00 1.8938e-01 5.4981e-01 7.4791e+00 4.3945e+00 v 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 Std f 4.4262e-19 5.5281e+02 1.6515e-01 0.0000e+00 1.2938e-02 6.5552e-03 2.1986e+00 1.1048e+00 v 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 FR c f -3.5453e+18 2.4811e+01 1.2123e+02 4.9896e+03 1.1493e+06 3.5975e-04 0.0000e+00 -3.2217e+04 v 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 Median f -4.5838e+13 5.9894e+01 3.4911e+02 5.4819e+03 1.6227e+06 1.1425e-03 4.3450e-19 -3.2217e+04 v 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 Mean f -1.5007e+17 5.8173e+01 3.3100e+02 5.9970e+03 1.6213e+06 1.3582e-03 7.8479e-11 -3.2217e+04 v 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 Worst f -1.6765e+11 9.6575e+01 4.5297e+02 1.4182e+04 2.1506e+06 6.0318e-03 1.5603e-09 -3.2217e+04 v 0.0000e+00 0.0000e+00 0....…”
Section: Discussionmentioning
confidence: 99%
“…) 3) Selection: Once the offspring is generated, the final step is to perform a greedy based selection as to whether the parent or the offspring solution should survive till the next generation. Most of the times, this decision is taken based on the objective function value of the parent and offspring also known as fitness value given by Eq (5).…”
Section: A Differential Evolution (De) Algorithmmentioning
confidence: 99%
See 1 more Smart Citation
“…2) DE Control Parameters: The control parameter adaption is enlivened from the success history-based hyperparameter adaptation [25], [46], [48]. It keeps a memory archive of the effective DE hyperparameters, to be specific, scaling factor F in Eq (5) and crossover rate Cr in Eq (6). The memory archives M F and M Cr are initialized to values F 0 and Cr 0 , respectively, i.e., M F,i = F 0 , i = 1, .…”
Section: A Mode Algorithmmentioning
confidence: 99%
“…Khorasani et al 8 carried out the vibration analysis of the GPLs reinforced sandwich plate by employing Hamilton's principle and Navier's scheme. Devarajan and Kapania [9][10][11] carried out an isogeometric finite element analysis of stiffened laminated composite plates, employing the non-uniform rational B-splines (NURBS) method. Moreover, the application of ultrasonic guided waves generated by piezoelectric smart transducers has been observed in the field of structural health monitoring, particularly in the context of the aerospace sector.…”
Section: Introductionmentioning
confidence: 99%