2021
DOI: 10.1145/3466826.3466832
|View full text |Cite
|
Sign up to set email alerts
|

Analyzing Transaction Confirmation in Ethereum Using Machine Learning Techniques

Abstract: Ethereum has emerged as one of the most important cryptocurrencies in terms of the number of transactions. Given the recent growth of Ethereum, the cryptocurrency community and researchers are interested in understanding the Ethereum transactions behavior. In this work, we investigate a key aspect of Ethereum: the prediction of a transaction confirmation or failure based on its features. This is a challenging issue due to the small, but still relevant, fraction of failures in millions of recorded transactions … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
1
0
1

Year Published

2022
2022
2023
2023

Publication Types

Select...
4
2
1

Relationship

0
7

Authors

Journals

citations
Cited by 11 publications
(2 citation statements)
references
References 8 publications
0
1
0
1
Order By: Relevance
“…Em [Oliveira et al 2021] foi desenvolvido métodos de previsão de falha no processamento de contratos por mineradores do Ethereum utilizando classificadores com aprendizado supervisionado. Por sua vez, [Singh and Hafid 2019] desenvolveram modelos de ML para prever o tempo de confirmac ¸ão de uma transac ¸ão, explorando o impacto de classes de dados desbalanceadas no treinamento e teste dos modelos selecionados.…”
Section: Trabalhos Relacionadosunclassified
“…Em [Oliveira et al 2021] foi desenvolvido métodos de previsão de falha no processamento de contratos por mineradores do Ethereum utilizando classificadores com aprendizado supervisionado. Por sua vez, [Singh and Hafid 2019] desenvolveram modelos de ML para prever o tempo de confirmac ¸ão de uma transac ¸ão, explorando o impacto de classes de dados desbalanceadas no treinamento e teste dos modelos selecionados.…”
Section: Trabalhos Relacionadosunclassified
“…We use the data from this website to obtain transaction processing times (our dependent variable) and to engineer several features used in our model (e.g., pending pool size and network utilization level). Data from Etherscan has been used in several blockchain empirical studies ( [32], [33], [? ])).…”
Section: Data Sourcesmentioning
confidence: 99%