Endocannabinoids has been described to be involved in articular degenerative disease by modulating nociception and immune system. However, the role of the endocannabinoid anandamide on chondrocyte cell viability is still unclear. Therefore, we decided to study anandamide's effects on chondrocytes viability and to evaluate its interactions with the catabolic factor TNF (tumor necrosis factor). Chondrocyte vitality was evaluated by MTT assay. We investigated LDH release, chromatin condensation, cleavage of focal adhesion kinase (FAK), and caspases-3, 8, and 9 activation. c-MYC mRNA levels were determined by RT-PCR. We studied by Western blot the activation patterns of AKT, AMPK, ERK, p38, and JNK kinases. Finally, we evaluate the effect of anandamide in TNF-induced caspase-3 cleavage. Anandamide decreased chondrocyte vitality independently of its receptors. It induced AMPK activation without LDH release. Anandamide induced chromatin condensation, activation of caspase-3, 8, and 9, and FAK cleavage. Surprisingly, despite anandamide inhibited cell proliferation, it increased c-MYC expression. Moreover anandamide inhibited AKT activation, whilst it induced a sustained activation of ERK, JNK, and p38. Finally, anandamide synergized with TNF-a in the cleavage of caspase-3. In conclusion, our findings suggest that anandamide, alone or in combination with TNF-a, may be a potential destructive agent in cartilage. Keywords: cannabinoids; chondrocyte physiology; apoptosis; signal transduction; TNF The endocannabinoid system is constituted by the cannabinoid receptors (CB 1 and CB 2 ), by the endocannabinoids (including anandamide [AEA] and others) and the machinery for their biosynthesis and metabolism.