Immunoglobulin E (IgE)-mediated immediate hypersensitivity reactions are the most concerning adverse events after penicillin antibiotics (PENs) administration because of their rapid progression and potential for fatal outcome. However, the diagnosis of allergic death is a forensic challenge because it mainly depends on nonspecific characteristic morphological changes, as well as exclusion and circumstantial evidence. In this study, an untargeted metabolomics approach based on liquid chromatography-mass spectrometry (LC-MS) was used to screen potential forensic biomarkers of fatal anaphylactic shock induced by four PENs (benzylpenicillin (BP), amoxicillin (AMX), oxacillin (OXA), and mezlocillin (MEZ)), and analyzed the metabolites, metabolic pathway and the mechanism which were closely related to the allergic reactions. The metabolomics results discovered that a total of 24 different metabolites in all four anaphylactic death (AD) groups, seven of which were common metabolites. A biomarker model consisting of six common metabolites (linoleic acid, prostaglandin D2, lysophosphatidylcholine (18:0), N-acetylhistamine, citric acid and indolelactic acid) AUC value of Receiver Operating Characteristic (ROC) curve was 0.978. Metabolism pathway analysis revealed that the pathogenesis of PENs-induced AD is closely related to linoleic acid metabolism. Our results revealed that the metabolomic profiling has potential in PENs-induced AD post-mortem diagnosis and metabolic mechanism investigations.
Supplementary Information
The online version contains supplementary material available at 10.1038/s41598-024-74623-x.